Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 15: 1350593, 2024.
Article in English | MEDLINE | ID: mdl-38433842

ABSTRACT

Introduction: Therapeutic vaccination in tuberculosis (TB) represents a Host Directed Therapy strategy which enhances immune responses in order to improve clinical outcomes and shorten TB treatment. Previously, we have shown that the subunit H56:IC31 vaccine induced both humoral and cellular immune responses when administered to TB patients adjunctive to standard TB treatment (TBCOX2 study, NCT02503839). Here we present the longitudinal whole blood gene expression patterns in H56:IC31 vaccinated TB patients compared to controls receiving standard TB treatment only. Methods: The H56:IC31 group (N=11) and Control group (N=7) underwent first-line TB treatment for 182 days. The H56:IC31 group received 5 micrograms of the H56:IC31 vaccine (Statens Serum Institut; SSI, Valneva Austria GmbH) intramuscularly at day 84 and day 140. Total RNA was extracted from whole blood samples collected in PAXgene tubes on days 0, 84, 98, 140, 154, 182 and 238. The expression level of 183 immune-related genes was measured by high-throughput microfluidic qPCR (Biomark HD system, Standard BioTools). Results: The targeted gene expression profiling unveiled the upregulation of modules such as interferon (IFN) signalling genes, pattern recognition receptors and small nucleotide guanosine triphosphate (GTP)-ases in the vaccinated group compared to controls two weeks after administration of the first H56:IC31 vaccine. Additionally, the longitudinal analysis of the Adolescent Cohort Study-Correlation of Risk (ACS-COR) signature showed a progressive downregulation in both study arms towards the end of TB treatment, in congruence with reported treatment responses and clinical improvements. Still, two months after the end of TB treatment, vaccinated patients, and especially those developing both cellular and humoral vaccine responses, showed a lower expression of the ACS-COR genes compared to controls. Discussion: Our data report gene expression patterns following H56:IC31 vaccination which might be interpreted as a lower risk of relapse in therapeutically vaccinated patients. Further studies are needed to conclude if these gene expression patterns could be used as prognostic biosignatures for therapeutic TB vaccine responses.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Adolescent , Humans , Oligodeoxyribonucleotides , Cohort Studies , Tuberculosis Vaccines/therapeutic use , Tuberculosis/prevention & control , RNA
2.
J Control Release ; 354: 851-868, 2023 02.
Article in English | MEDLINE | ID: mdl-36681282

ABSTRACT

Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Humans , Animals , Zebrafish , Micelles , Tuberculosis/drug therapy , Antitubercular Agents , Mice, Inbred Strains , Polymers/therapeutic use
3.
Nucleic Acids Res ; 51(1): 144-165, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546765

ABSTRACT

The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.


Subject(s)
Anti-Bacterial Agents , Mycobacterium tuberculosis , Prodrugs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heat-Shock Response/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Prodrugs/pharmacology , Promoter Regions, Genetic , Transcription, Genetic , Anti-Bacterial Agents/pharmacology
4.
Dis Model Mech ; 15(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34842273

ABSTRACT

With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.


Subject(s)
Mycobacterium tuberculosis , Nanoparticles , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mice , Tuberculosis/drug therapy , Tuberculosis/microbiology , Zebrafish/microbiology
5.
Eur J Med Chem ; 207: 112821, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32950907

ABSTRACT

Several phenanthrolinic analogs of quinolones have been synthesized and their antibacterial activity tested against Mycobacterium tuberculosis, other mycobacterial species and bacteria from other genera. Some of them show high activity (of the range observed for rifampicin) against M. tuberculosis replicating in vitro and in vivo (infected macrophages) conditions. These derivatives show the same activity with all or several M. tuberculosis complex bacterial mutants resistant to fluoroquinolones (FQ). This opens the way to the construction of new drugs for the treatment of FQ resistant bacterial infections, including tuberculosis. Several compounds showed also activity against Staphylococcus aureus and probably other species. These compounds do not show major toxicity. We conclude that the novel phenanthrolinic derivatives described here are potent hits for further developments of new antibiotics against bacterial infectious diseases including tuberculosis in particular those resistant to FQ.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Phenanthrolines/chemistry , Quinolones/chemistry , Quinolones/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests
6.
EBioMedicine ; 58: 102902, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32707448

ABSTRACT

BACKGROUND: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. METHODS: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. FINDINGS: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. INTERPRETATION: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells. FUNDING: We received funding from the Norwegian research council and the Norwegian cancer society.


Subject(s)
Doxorubicin/administration & dosage , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/drug therapy , Polymethacrylic Acids/administration & dosage , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/drug therapy , Administration, Intravenous , Animals , Carbocyanines/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Humans , Macrophages/chemistry , Melanoma, Experimental/chemistry , Melanoma, Experimental/pathology , Mice , Microscopy, Electron , Nanoparticles , Neoplasm Transplantation , Neural Tube/chemistry , Neutrophils/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Skin Neoplasms/chemistry , Skin Neoplasms/pathology , Treatment Outcome , Zebrafish
7.
Acta Orthop ; 83(3): 299-304, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22616742

ABSTRACT

PURPOSE: We wanted to improve the diagnosis of implant-related infection using molecular biological techniques after sonication. METHODS: We studied 258 retrieved implant components (185 prosthetic implants and 73 osteosynthesis implants) from 126 patients. 47 patients had a clinical diagnosis of infection (108 components) and 79 patients did not (150 components). The fluids from sonication of retrieved implants were tested in culture and were also analyzed using a modified commercial PCR kit for detection of Gram-positive and Gram-negative bacteria (GenoType BC; Hain Lifescience) after extraction of the DNA. RESULTS: 38 of 47 patients with a clinical diagnosis of infection were also diagnosed as being infected using culture and/or PCR (35 by culture alone). Also, 24 patients of the 79 cases with no clinical diagnosis of infection were identified microbiologically as being infected (4 by culture, 16 by PCR, and 4 by both culture and PCR). Comparing culture and PCR, positive culture results were obtained in 28 of the 79 patients and positive PCR results were obtained in 35. There were 21 discordant results in patients who were originally clinically diagnosed as being infected and 28 discordant results in patients who had no clinical diagnosis of infection. INTERPRETATION: For prosthetic joint infections and relative to culture, molecular detection can increase (by one tenth) the number of patients diagnosed as having an infection. Positive results from patients who have no clinical diagnosis of infection must be interpreted carefully.


Subject(s)
Fracture Fixation, Internal , Prostheses and Implants , Prosthesis-Related Infections/diagnosis , Sonication/methods , Surgical Wound Infection/diagnosis , Adult , Aged , Aged, 80 and over , DNA Probes , Gram-Negative Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/diagnosis , Humans , Middle Aged , Mycoses/diagnosis , Polymerase Chain Reaction/methods , Young Adult
8.
Enferm Infecc Microbiol Clin ; 29(2): 79-84, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21333405

ABSTRACT

OBJECTIVES: To study the resistance of biofilms developed by non-pigmented rapidly growing mycobacteria (NPRGM) against amikacin, ciprofloxacin and clarithromycin in an in vitro model using clinical strains of different species. DESIGN: Antimicrobial susceptibilities of different clinical strains of Mycobacterium abscessus, Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium peregrinum, Mycobacterium mucogenicum and Mycobacterium mageritense using conventional techniques were measured. Biofilm resistance was measured by using the sandwich technique developed by Anderl et al. using a concentration of antibiotic of 50mg/L. Penetration of antibiotics through biofilm was measured using the same technique with minimal modifications. RESULTS: NPRGM biofilms showed drug resistance (percentages of viable bacteria >1% of those of controls) against antibiotics that are commonly used for the treatment of infections caused by these organisms, although there are intraspecies differences between strains. We have detected differences in antibiotic penetration through biofilms with an important permeability barrier for ciprofloxacin. However, other mechanisms must be probably more important to explain the antimicrobial resistance of NPRGM biofilm. CONCLUSIONS: Biofilms formed by NPRGM are resistant to amikacin, ciprofloxacin and clarithromycin. As no resistance differences between the tested antibiotics have been observed, it is likely that biofilm permeability of antibiotics is of low importance for antimicrobial resistance of biofilms.


Subject(s)
Amikacin/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , Biofilms/drug effects , Ciprofloxacin/pharmacokinetics , Clarithromycin/pharmacokinetics , Drug Resistance, Multiple, Bacterial/physiology , Mycobacterium/physiology , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Load , Ciprofloxacin/pharmacology , Clarithromycin/pharmacology , In Vitro Techniques , Microbial Sensitivity Tests , Mycobacterium/drug effects , Mycobacterium/growth & development , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/growth & development , Nontuberculous Mycobacteria/physiology , Species Specificity
9.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 29(2): 79-84, feb. 2011. graf, tab
Article in Spanish | IBECS | ID: ibc-97345

ABSTRACT

Objectives To study the resistance of biofilms developed by non-pigmented rapidly growing mycobacteria (NPRGM) against amikacin, ciprofloxacin and clarithromycin in an in vitro model using clinical strains of different species. Design Antimicrobial susceptibilities of different clinical strains of Mycobacterium abscessus, Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium peregrinum, Mycobacterium mucogenicum and Mycobacterium mageritense using conventional techniques were measured. Biofilm resistance was measured by using the sandwich technique developed by Anderl et al. using a concentration of antibiotic of 50mg/L. Penetration of antibiotics through biofilm was measured using the same technique with minimal modifications. Results NPRGM biofilms showed drug resistance (percentages of viable bacteria >1% of those of controls) against antibiotics that are commonly used for the treatment of infections caused by these organisms, although there are intraspecies differences between strains. We have detected differences in antibiotic penetration through biofilms with an important permeability barrier for ciprofloxacin. However, other mechanisms must be probably more important to explain the antimicrobial resistance of NPRGM biofilm. Conclusions Biofilms formed by NPRGM are resistant to amikacin, ciprofloxacin and clarithromycin. As no resistance differences between the tested antibiotics have been observed, it is likely that biofilm permeability of antibiotics is of low importance for antimicrobial resistance of biofilms (AU)


Objetivos Estudiar la resistencia de biopelículas formadas por micobacterias no pigmentadas de crecimiento rápido (MNPCR) frente amicacina, ciprofloxacino y claritromicina en in modelo in vitro empleando aislamientos clínicos de diferentes especies. Material y MétodosSe estudiaron las sensibilidades de las diferentes cepas clínicas de Mycobacterium abscessus, Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium peregrinum, Mycobacterium mucogenicum y Mycobacterium mageritense mediante técnicas convencionales. La resistencia de dichas bacterias en la biopelícula fue estudiada mediante la técnica de sándwich descrita por Anderl et al. utilizando una concentración de antibiótico de 50mg/L. La penetración de los antibióticos a través de la biopelícula fue estudiada mediante la misma técnica con mínimas modificaciones. Resultados Las biopelículas de MNPCR presentaron resistencia (porcentajes de bacterias viables > 1% de los recuentos obtenidos en los controles) frente a todos los antibióticos que son empleados habitualmente en las infecciones causadas por estos organismos, si bien se detectaron diferencias dentro de la misma especie entre las diferentes cepas. Hemos detectado diferencias en la penetración de antibióticos a través de la biopelícula, especialmente con una importante disminución de la permeabilidad frente a ciprofloxacino. Sin embargo, otros mecanismos son, probablemente, más importantes para explicar la resistencia antimicrobiana de las biopelículas de MNPCR. Conclusiones Las biopelículas formadas por MNPCR son resistentes frente a amicacina, ciprofloxacino y claritromicina. Como no se demostraron diferencias importantes entre los distintos antibióticos, es probable que la permeabilidad de la biopelícula frente a los antibióticos tenga poca importancia en la resistencia antimicrobiana de las biopelículas (AU)


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Drug Resistance, Bacterial , Biofilms , Amikacin/pharmacokinetics , Ciprofloxacin/pharmacokinetics , Clarithromycin/pharmacokinetics , Mycobacteriaceae/pathogenicity
10.
J Clin Microbiol ; 47(7): 2026-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19458183

ABSTRACT

The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.


Subject(s)
Bacterial Typing Techniques/methods , DNA Fingerprinting/methods , Interspersed Repetitive Sequences , Minisatellite Repeats , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction/methods , Tuberculosis/microbiology , Cluster Analysis , DNA, Bacterial/genetics , Genotype , Humans , Molecular Epidemiology/methods , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Restriction Fragment Length , Sensitivity and Specificity
11.
Clin Infect Dis ; 47(1): 8-14, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18484876

ABSTRACT

BACKGROUND: An increase in the incidence of tuberculosis (TB) in immigrants has changed the socioepidemiologic scenario in Spain. It is generally assumed that TB in immigrants is the result of importation of infection, but the role of recent transmission is rarely considered. Standard contact tracing is not suitable for the survey of transmission in this complex scenario. METHODS: During the study period (2003-2006), we genotyped 356 (90.4%) of 394 isolates from patients with microbiologically confirmed TB in Almería, the province with the highest percentage of TB cases among immigrants in Spain. The epidemiologic survey of TB transmission was performed by active data collection using standardized interviews of the patients with TB and subsequent interviews of the clustered patients (who were clustered on the basis of the restriction fragment-length polymorphism types of their isolates) to identify transmission locations (supported by nominal and/or photographic recognition by the clustered patients). RESULTS: Of all 356 genotyped isolates, 131 (36.8%) were clustered, suggesting recent transmission. The difference between the clustering rate for immigrants (32.8%) and that for native patients (41.6%) was not statistically significant (P = .087); of the 45 clusters, 15 (33.3%) involved only immigrants, 17 (37.8%) involved only autochthonous patients, and 13 (28.9%) involved both immigrants and autochthonous patients. The advanced system to investigate the clustered patients succeeded in detecting links in 10 of the 12 clusters that involved >4 patients, whereas the conventional approach, based on contact tracing, could detect links in only 2 clusters. CONCLUSIONS: Recent transmission among immigrants and transmission permeability between the immigrant and autochthonous populations were found. Epidemiologic strategies that combine universal genotyping and refined surveys of the clustered patients are needed to investigate transmission patterns in complex scenarios.


Subject(s)
Tuberculosis/epidemiology , Tuberculosis/transmission , Adult , Bacterial Typing Techniques , Cluster Analysis , Contact Tracing/methods , Emigrants and Immigrants , Female , Genotype , Humans , Incidence , Male , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Risk Factors , Socioeconomic Factors , Spain/epidemiology
12.
BMC Microbiol ; 8: 34, 2008 Feb 24.
Article in English | MEDLINE | ID: mdl-18339198

ABSTRACT

BACKGROUND: During the last few years, PCR-based methods have been developed to simplify and reduce the time required for genotyping Mycobacterium tuberculosis (MTB) by standard approaches based on IS6110-Restriction Fragment Length Polymorphism (RFLP). Of these, MIRU-12-VNTR (Mycobacterial interspersed repetitive units- variable number of tandem repeats) (MIRU-12) has been considered a good alternative. Nevertheless, some limitations and discrepancies with RFLP, which are minimized if the technique is complemented with spoligotyping, have been found. Recently, a new version of MIRU-VNTR targeting 15 loci (MIRU-15) has been proposed to improve the MIRU-12 format. RESULTS: We evaluated the new MIRU-15 tool in two different samples. First, we analyzed the same convenience sample that had been used to evaluate MIRU-12 in a previous study, and the new 15-loci version offered higher discriminatory power (Hunter-Gaston discriminatory index [HGDI]: 0.995 vs 0.978; 34.4% of clustered cases vs 57.5%) and better correlation (full or high correlation with RFLP for 82% of the clusters vs 47%). Second, we evaluated MIRU-15 on a population-based sample and, once again, good correlation with the RFLP clustering data was observed (for 83% of the RFLP clusters). To understand the meaning of the discrepancies still found between MIRU-15 and RFLP, we analyzed the epidemiological data for the clustered patients. In most cases, splitting of RFLP-clustered patients by MIRU-15 occurred for those without epidemiological links, and RFLP-clustered patients with epidemiological links were also clustered by MIRU-15, suggesting a good epidemiological background for clustering defined by MIRU-15. CONCLUSION: The data obtained by MIRU-15 suggest that the new design is very efficient at assigning clusters confirmed by epidemiological data. If we add this to the speed with which it provides results, MIRU-15 could be considered a suitable tool for real-time genotyping.


Subject(s)
Interspersed Repetitive Sequences , Minisatellite Repeats/genetics , Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction/methods , Tuberculosis/microbiology , Cluster Analysis , Genotype , Humans , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Restriction Fragment Length , Statistics as Topic , Tuberculosis/epidemiology
13.
J Clin Microbiol ; 45(1): 63-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17108076

ABSTRACT

We conducted a population-based molecular epidemiological study of tuberculosis (TB) in Madrid, Spain (2002 to 2004), to define transmission patterns and factors associated with clustering. We particularly focused on examining how the increase in TB cases among immigrants in recent years (2.8% in 1997 to 1999 to 36.2% during the current study) was modifying transmission patterns. Mycobacterium tuberculosis isolates obtained from patients living in nine districts of Madrid (1,459,232 inhabitants) were genotyped. The TB case rate among foreign-born people was three to four times that of Spanish-born people, and the median time from arrival to the onset of treatment was 22.4 months. During the study period, 227 (36.3%) patients were grouped in 64 clusters, and 115 (50.7%) of them were in 21 clusters with mixed Spanish-born and foreign-born patients. Three of the 21 mixed clusters accounted for 21.1% of clustered patients. Twenty-two of 38 (57.9%) immigrants in mixed clusters were infected with TB strains that had already been identified in the native population in 1997 to 1999, including the three most prevalent strains. Factors identified as independent predictors of clustering were homelessness (odds ratio [OR], 2.3; 95% confidence interval [95% CI], 1.2 to 4.5; P = 0.011) and to be born in Spain (OR, 1.8; 95% CI, 1.2 to 2.6; P = 0.002). The results indicated that (i) TB transmission was higher in Spanish-born people, associated mainly with homelessness, (ii) that foreign-born people were much less likely to be clustered, suggesting a higher percentage of infection before arriving in Spain, and (iii) that an extensive transmission between Spanish- and foreign-born populations, caused mainly by autochthonous strains, was taking place in Madrid.


Subject(s)
Emigration and Immigration/statistics & numerical data , Mycobacterium tuberculosis , Tuberculosis/epidemiology , Tuberculosis/transmission , Adolescent , Adult , Child , Child, Preschool , Cluster Analysis , Contact Tracing , Female , Humans , Incidence , Male , Middle Aged , Risk Factors , Spain/epidemiology , Tuberculosis/microbiology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/transmission
14.
J Clin Microbiol ; 43(11): 5660-4, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16272501

ABSTRACT

In recent years, the application of molecular tools has shown us that clonal complexity in infection by Mycobacterium tuberculosis is not anecdotal. Exogenous reinfections, mixed infections, compartmentalization, and microevolution are different aspects of this issue. The detection and characterization of clonal variants of M. tuberculosis by standard genotyping methods is laborious and frequently requires expertise. Our aim was to evaluate a new genotyping PCR-based method for M. tuberculosis, mycobacterial interspersed repetitive unit-variable-number tandem repeat typing (MIRU-VNTR), as a potential tool to simplify and optimize the clonal analysis of tuberculosis. MIRU-VNTR was able to detect mixed clonal variants in vitro, even for clones at low ratios (1:99). This technique was prospectively applied to search for cases infected by more than one clone. Clonal variants within the same host were detected in 3 out of 115 cases (2.6%), including cases with clones which were indistinguishable by restriction fragment length polymorphism or spoligotyping. In one case, coinfecting clonal variants differed in antibiotic susceptibilities. MIRU-VNTR was applied to cases with proven polyclonal infection, and it succeeded in detecting the coinfecting strains and proved useful in confirming cases of compartmentalized infection. MIRU-VNTR is a simple, rapid, and sensitive method which could facilitate and optimize the identification and characterization of clonal complexity in M. tuberculosis infection.


Subject(s)
Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction/methods , Tuberculosis/microbiology , DNA Transposable Elements , Genetic Variation , Humans , Minisatellite Repeats , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...